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Putting Einstein to test

Astrometric experiments in fundamental physics
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Abstract. In classical Astronomy, the main goal of Astrometry was the determination of an
inertial frame of reference, which, in modern language, can be intended as an experiment
of fundamental physics. In relativistic physics the concept of an absolute inertial frame of
reference cannot hold anymore, nonetheless Astrometry retains its role as an experimental
counterpart of fundamental physics. Modern high-precision astrometry, in fact, must be
formulated on the theoretical background of relativistic physics and of a relativistic theory
of measure. On the other side, it can be used to put to test several topics involved in the
quest among the different theories of gravity. This talk will try to give a brief overview
on the connections between some of these topics and their formulation as an astrometric
experiment.

1. Introduction

Although General Relativity (GR) is still the
most favoured theory providing a detailed de-
scription of the Gravitational interaction be-
yond the Newtonian limit, several other alter-
natives have been proposed since GR was de-
veloped. Examples of such theories are those
where the field equations contain not only the
metric tensor of GR, but also a scalar field
coupled with the metric itself (Will , 2006),
or the so-called fourth-order theories of grav-
ity, where the scalar of curvature R in the field
equations is replaced by a more complex func-
tion of this quantity, f (R) (Capozziello and
Faraoni, 2011).

The most popular mathematical tools used
to discriminate among the possible theories
is the so-called Parametrized Post-Newtonian
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framework which enables the comparison of
several theories through the estimation of the
value of a limited number of parameters. The
most important parameters for experiments
based on astrometric measurements are γ and
β since they are connected with the classical
astrometric phenomena of the light deflection
and of the excess of perihelion precession in
the orbits of massive objects.

Besides its immediate implication for the
fundamental physics problem of characteriz-
ing the best gravity theory, a precise estima-
tion of these parameters has important conse-
quences on the interpretation of observational
evidences at different scales in space and time
up to cosmological scales. A precise estimation
of these two parameters, has important theo-
retical and observational implications. It could
help to fulfill theoretical needs because they are
the phenomenological “trace” of a scalar field
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coupled with gravity of scalar-tensor theories
which is related to:

– theories fully compatible with the Mach
principle (Brans and Dicke, 1961);

– cosmological scenarios with inflationary
stage (Damour and Nordtvedt , 1993);

– theories aiming to provide a formulation of
a quantum theory of gravity (Damour et al.
, 2002).

For example, there are formulations of scalar-
tensor theories in which the scalar field evolves
with time toward a theory close to GR leaving
little relic deviations at present times (Damour
and Esposito-Farèse , 1992). Such deviations
from GR today range from 10−5 to a few times
10−7 for |γ−1|, depending on the cosmological
model (Damour and Nordtvedt , 1993).

On the front of the f (R) theories, instead, it
has been argued that the current estimations of
the γ and β PPN parameters are not sufficient
to provide serious constraints on such theories,
which claim of being able to explain obser-
vational evidences about several astrophysical
and cosmological problems without any need
for Dark Matter (DM) or Dark Energy (DE)
like, e.g. Capozziello et al. (2009):

– DE dynamics (acceleration of cosmologi-
cal expansion);

– DM dynamics (galactic rotation curves,
galaxy cluster masses);

– observational data from gravitational lens-
ing;

– Tully-Fisher relation.

Again, it seems that the desired experimental
accuracy can be set at level of 10−7 to 10−8 for
|γ − 1|, and from 10−5 for |β − 1| (Capozziello
et al., 2006).

Among the other useful tools with a pos-
sible importance for astrometric-based experi-
ments, we can cite the Mansouri-Sexl formal-
ism (Mattingly , 2005) which can in principle
provide a way to test the foundations of Special
Relativity which are connected to different ap-
proaches toward the quantization of gravity.

2. Basics of measurement theory in a
relativistic astrometric framework

In order to understand why Astrometry can be
used to set limits to the PPN parameters and
therefore to put to test the different theories
of gravity, it has to be shown how these pa-
rameters enter the astrometric observable. The
most basic measure in Astrometry, ideally, is
the angle ψ12 between two observing direc-
tions, which in the usual Euclidean geometry
reads

cosψ12 =
r1 · r2

|r1| |r2| , (1)

and can be represented as the projection on a
unit sphere of the two vectors r1 and r2 con-
necting the observer and the objects P and Q.

In order to give a correct interpretation of
the experimental results, however, the mea-
surements must be written in a proper rela-
tivistic way, i.e. following the prescription of
the theory of measurements. The details of
this formalism are out of scope in this paper,
and are fully developed in de Felice and Bini
(2010). We therefore will give here only a brief
overview of the main concepts needed to fol-
low the present exposition.

The relativistic counterpart of Eq. (1) can
be written as

cosψ12 =
Tαβkα1 kβ2√

Tαβkα1 kβ1

√
Tαβkα2 kβ2

(2)

where, kα1 and kα2 are the two observing direc-
tions (de Felice and Clarke, 1990), and Tαβ
is an operator that depends on the space-time
metric gαβ and on the four-velocity of the ob-
server uα. It has to be noticed, however, that the
expression “observing direction” has not to be
intended as the result of a measure. The ob-
servable is the angle at the left-hand-side of
the equation, while the four-vectors kα1,2 have
the mathematical meaning of the tangents to
the path of the incoming light rays connecting
the positions of the observed objects to the ob-
server, i.e. of the null geodesics of the observed
photons. In other words, if s is the parameter of
the null geodesic xα, then

kα =
dxα

ds
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and this four-vector can be obtained by solv-
ing the geodesic equation (i.e. the relativistic
equation of motion)

d2xα

ds2 + Γαβγ
dxβ

ds
dxγ

ds
= 0. (3)

This formula has to be expressed as a
function of the desired astrometric unknowns,
namely the positions and proper motions of the
observed objects. Moreover, a relativistic for-
mulation of the astrometric measurements has
to properly take into account the geometry of
the space-time, and this is the way the PPN pa-
rameters γ and β enter the observation equa-
tions.

3. Other kind of astrometric
experiments. Beyond the PPN
framework

Other interesting phenomena which can be
used to test the gravity theories at a fundamen-
tal level are the higher-order quadrupole con-
tribution to the light deflection, and the possi-
ble violations of the Local Lorentz Invariance
(LLI). Both can be put to test with convenient
astrometric experiments.

The first one is foreseen by GR and other
theories of gravity when the light is deflected
by perturbing bodies with non-spherically
symmetric distributions of the mass. The co-
efficients of gαβ, in fact, in this case does not
depend only on the mass, but also on the higher
order multipoles of the gravity field of the per-
turbing body. The deflection can then be de-
scribed as a vectorial quantity with two com-
ponents n and m

∆ψ = ∆ψ1n + ∆ψ2m

with respect to a reference triad (n,m, z) where
the z-axis is orthogonal to the celestial sphere.

The two components can be modelled as
functions of a parameter ε whose value is 1 in
GR like in the following formulae (Crosta and

Mignard, 2006)

∆ψ1 =
2 (1 + γ) M

b

[
1 + εJ2

R2

b2 (4)
(
1 − 2 (n · z)2 − (t · z)2

)]

∆ψ2 =
4 (1 + γ) MεJ2R2γ

b3 (m · z) (n · z) (5)

where M is the mass of the perturbing body,
J2 is the quadrupole component of its gravi-
tational field, and b the impact parameter, i.e.
the distance of maximum approach of the light
path to the perturbing body.

This asymmetric perturbation on the light
path induces specific patterns in the nearby
light deflection which have never been mea-
sured up to now because of the smallness of
this effect.

Tests of possible violations of the LLI are
motivated by several theoretical models en-
compassing a large number of different sub-
jects, from quantum gravity to varying speed
of light cosmologies. A complete review of
the tests and of the motivations linked to the
LLI is out of scope here, and can be found in
Mattingly (2005). Here we will limit ourselves
to cite the Robertson-Mansouri-Sexl (RMS)
formalism for its possible application to as-
trometry. A violation of the LLI, in fact, will
show itself as a breaking of the Lorentz trans-
formations. The RMS formalism is a way to
describe this hypothetical breaking in a kine-
matical way.

In analogy to the PPN formalism, the RMS
framework is developed under the assumption
that v � c, and can be expressed as a general-
ization of the Lorentz transformations

T =
(t − ε · x)

a
X =

x
d
−

(
1
d
− 1

b

)
v(v · x)

v2 +
v
a

t
(6)

depending on a set of arbitrary parameters
(a, b, d, ε). The potential impact of this formal-
ism on astrometric measurements comes from
the fact that those LLI violations depending
on f = d/b, show themselves as an aber-
ration effect which therefore puts to test the
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same properties of the Michelson-Morley ex-
periment. It is probable that violations depend-
ing on such aberration effect are out of reach
for the present planned space experiments like
Gaia (Klioner, 2008) but possible applications
to new and more sensitive experiments has not
been investigated yet.
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